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Motivation

Reliable prediction of cross sections and final-state distributions for QCD
processes is important not only as a test of QCD but also for the design of

collider experiments and new particle searches.

All systematic approaches to this problem are based on perturbation theory,
usually truncated at next-to-leading order (NLO).

For the description of exclusive hadronic final states, perturbative calculations
have to be combined with a model for the conversion of partonic final states
into hadrons (hadronization). Existing hadronization models are in remarkably

good agreement with a wide range of data, after tuning of model parameters.

However, these models operate on partonic states with high multiplicity and
low relative transverse momenta, which are obtained from a parton shower
Monte Carlo (MC) approximation to QCD dynamics and not from fixed-order

calculations.



Objectives

e Qur aim is to develop a practical method for combining existing parton shower
MC programs with NLO perturbative calculations (MCQNLO).

e We require MCQNLO to have the following characteristics:
[1 The output is a set of events, which are fully exclusive.
[1 Total rates are accurate to NLO.

[1 NLO results for all observables are recovered upon expansion of MCQNLO

results in as.
Hard emissions are treated as in NLO computations.
Soft /collinear emissions are treated as in MC.

The matching between hard- and soft-emission regions is smooth.
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MC hadronization models are adopted.



Toy Model

e Consider first a toy model that allows simple discussion of key features of
NLO, of MC, and of matching between the two.

[J Assume a system can radiate massless “photons”, energy x, with
0<z<uz, <1, x5 being energy of system before radiation.

[ After radiation, energy of system is !, = 5 — .
[1 System can undergo further emissions, but photons themselves cannot
radiate.

e Task of predicting an infrared-safe observable O to NLO amounts to
computing the quantity

=ty [[assow () + (), + (),

where Born, virtual and real contributions are respectively

Qﬂmv@? = Bi(z), a AW + <v o). aE)

X

a is coupling constant, and lim,_,q R(z) = B.
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e In subtraction method, real contribution is written as:

(0). = aBO(0) \OH PRI @\OH gz @) @) — BO©O)

T Hu+wm

Second integral is non-singular, so we can set ¢ = 0:

(O) = |gm©§ - Q\H iz Q@) 1(z) = BO(0)

R 2¢ €T

e Therefore NLO prediction is:

(0) = BO(0)+a To@ N \ ' O@)R() - moev‘
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e We rewrite this in a slightly different form:

) = \OH de T@@ +0(0) Am LaV - @z
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Toy Monte Carlo

e In a treatment based on Monte Carlo methods, the system can undergo an
arbitrary number of emissions (branchings), with probability controlled by the

Sudakov form factor, defined for our toy model as follows:

A(w1,z2) = exp ~|@ \SS %@WL

1

where ()(z) is a monotonic function with the following properties:

0<Q(z) <1, lmQ(z)=1 IlimQ(z)=0

x—0 r—1

A(x1,x2) is the probability that no photon be emitted with energy x such that

1 <z < I9.



Modified Subtraction

We want to interface NLO to MC. Naive first try:

0(0) = start MC with 0 real emissions: Fy¢ (0)
O(z) = start MC with 1 emission at x: .ﬁA:A )

so that overall generating functional is

\OH% me Am+@<||mv + FY) () 4R2)

X X

This is wrong: MC starting with no emissions will generate emission, with

NLO distribution .
(42) —up
MC

dx x
We must subtract this from second term, and add to first:
B —1
Fucento = \, dx Tﬁ.AS Am +aV + ¢ ~©M~uv _v
0
x
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FumcenLo = \ dx Tﬁav Am +aV +
0

) () ALB@ -%é

X

aB[Q(z) — :v

This prescription has several good features:
o FiY=7rFYto O(1), so added and subtracted terms are equal to O(a);
e (oeflicients of .ﬁ,mo and Fyd (1) are now separately finite;

e Same resummation of large logs in JFy;¢ (0) and Faié D = Fucento gives same

(0)

resummation as F;¢&, renormalised to correct NLO cross section.

Note, however, that some events may have negative weight.



Toy Model Observables

e As an example of an “exclusive” observable, we consider the energy y of the
hardest photon in each event. The NLO and MC predictions are

(@)=

e As an “inclusive” observable, consider the fully inclusive distribution of photon

£, -

@hv Q0

e Toy model results below are for

energies, z:

a = 03, B=2, V=1,
R(x) = m+%ﬁ+a\w+wo&mV



e For MC we have assumed a “dead zone” QQ(x) = 0 for z > 0.6

smoothing at boundary (see figure).
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Modified Subtraction for Real QCD

e Consider a hadron collider process which is 2 — 2 at LO, e.g. WTW~ or QQ
pair production. Schematic expression for any observable O, evaluated by

subtraction method, is

(0)

sub

\ dx1dze ds fo(z1) fo(T2) ﬁgﬁlywv\iggf T2, ¢3)

+ 02—2) A.\XG:X&H%?&MV \S?SA&T&?@MLL

] .\SAS is NLO real-emission contribution;

[] .>\~G v:¢) are LO Born, NLO virtual and collinear (finite parts);

\S? %) are counter-terms which cancel divergences of .\S§

e Naively, for MC@NLO we would replace O(?723) by .ﬁﬁlyw 3) (MC generating
functionals starting from 2 — 2,3 hard subprocesses), to obtain Fycenro-

e This would be wrong because Fy; (222) also generates 2 — 3 configurations,

which must be subtracted from weight of Fy; (23) (and added to that of

oﬂ.H/A\HMAu'vMV v .
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® Therefore for MCQNLO we define

1
Frcenro = M\o dxy dzo &%w \@A&HVM@A&NV
ab

ﬁoﬂw@w@iwv A.>\~Q& AHHQH?@&V .\/\NMwMOvARHuRMQ@wvv +
EIVB A.>\~Q§ &@f&?%& .>\~A§ X&f&mu@wv .\SEQA&?&?&&V

e Provided MC does a good job in all soft and collinear limits, coefficients of

Fl2=2) FE73) are now separately finite.

and
e But coeflicients may be negative = some events have negative weight.

e Number of negative weights can be reduced by tuning counterterms. Typically
we find 10 — 20%.
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large-scale physics correctly
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Jet Observables in W1TW ™~ Production
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Jets have been reconstructed with
a kr algorithm. It is striking that
inclusive jet distribution displays
the same behaviour as in the toy
model: MCQNLO/MC=K factor
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o/bin (pb)
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It 1is interesting that the
MCQNLO fills further the kine-
matic dip at gy + —nz = 0. The
difference between MCQNLO
and MC is enhanced by the cuts

in the A¢ tail
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Heavy Quark Production

e Modified subtraction formula above can be used for any process.
[1 Take standard subtraction formula;
[J Calculate analytically exactly what MC does at NLO;
0 Insert MV (21,22, ¢3) terms;
[1 Generate 2 — 2 and 2 — 3 parton configurations and weights;
[1 Feed into MC (using Les Houches interface, hep-ph/0109068).

e Most difficult part is calculating what MC does!
[J Details in FNW, JHEP 0308(2003)007 [hep-ph/0305252]
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MC Heavy Quark Production

MC starts from 2 — 2 subprocess = momentum reshuflling is done after real

10 0.0

Relation between invariants and shower variables depends on which leg emits!

emission.

Colour structure assigned (for shower/hadronization) according to N — oo

\_| _/

limit.

etc

M1 M>
3 o0 00
Prob; = | 3 M2 M2/ 3 | M

J J
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t, t Observables at Colliders
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These correlations display the
same patterns as those for vector
boson pair production. Hard- and
soft-scale physics are both treated
correctly.

103

20

500

100

50 r

Correlations at LHC

100.0
50.0

10.0
— 5.0

1.0
T 0.5

1073

1072

101
(m—2gCP) /7

wwwww

Solid: MC@NLO
Dashed: HERWIG x
Dotted: NLO

g

ONLO
L

O




bb Correlations at Tevatron
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HERWIG does well (after cuts) but
needs much more CPU: 14 million
events vs 1 million for MCQ@QNLO

(no K-factor)
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b Production with HERWIG

e In parton shower MC’s, 3 classes of processes can contribute:

£

FCR GSP FEX

e All are needed to get close to data (RD Field, hep-ph/0201112):

Integrated b-quark Cross Section for PT > PTmin Integrated b-quark Cross Section for PT > PTmin
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GSP and FEX contributions in HERWIG
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e GSP, FEX and FCR are complementary and all must be generated
[J GSP cutoff (PTMIN) sensitivity depends on cuts and observable
[1 FEX sensitive to bottom PDF

[ GSP efficiency very poor, ~ 104
e All these problems are avoided with MCQNLO!
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e (NLO + kp-kick) with (k7) =4 GeV ~ MC@NLO (at Tevatron)

Solid: MC@NLO
Dotted: NLO
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emulates the effect of initial-state parton showers.

e This does NOT mean that there is (k7) = 4 GeV inside proton: it simply




Hadron-level Results on B production

e B — J/1 results from Tevatron Run Il = B hadrons (includes BR’s)
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e No significant discrepancy!
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Associated Higgs + Vector Boson Production

e Associated Higgs production implemented with full decay correlations

W  spin correlation in WH at Tevatron

moo I T T 4 T T T T 4 T T T T 4 T T ]
I HW6.506 ]
600 — —
400 —
HW6.505 ]

200 —

O L L 7 L L L L 7 L L L L 7 L L
-2 0 2

d(e )—o(p) in WH r.f.

e LO in HERWIG 6.506, NLO in MC@QNLO 3.1 (in preparation)
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Associated Higgs + Vector Boson Production (cont’d)

e W H azimuthal separation in pp — WTH%X at Tev II
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Unassociated Higgs Production at LHC
e Good agreement with (N)NLO-+NNLL

o " Hist: MC@NLO -
Solid: NNLO+NNLL resc
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Conclusions and Future Prospects

MC@NLO exists and works well for W, Z, H,L WW, WZ, ZZ, WH, ZH, ¢t and
bb production. Negative weights ~ 10% (tf) to 20% (bb) not a problem.

Decay correlations implemented for W, Z, WH, ZH, not yet for others.
Jet production needs more work.
Shower modification to avoid negative weights looks possible (P Nason).

General interface to NLO (subtraction method) programs feasible.
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